Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Environ Pollut ; 316(Pt 1): 120507, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36341830

RESUMO

The current study elucidates the fundamentals of technical, financial, and environmental viability of the processes used for sustainable "drop-in" fuel generation. At present, the price of producing "drop-in" fuels is around two times as costly (5-6 USD/gallon) as the cost of fossil fuels (3 USD/gallon), especially when using second-generation feedstocks. Hence, this necessitates a comprehensive techno-economic understanding of the current technologies with respect to "drop-in"-fuel. This entitles technical-economic viability, and environmental sustainability to make the processes involved commercially viable. In this context, the present review addresses unique contrasts among the various processes involved in "drop-in" fuel production. Furthermore, principles and process flow of techno-economic analysis as well as environmental implications in terms of reduced carbon footprint and carbon credit are elucidated to discuss fundamentals of techno-economic analysis in terms of capital and operational expenditure, revenue, simulation, cash flow analysis, mass and energy balances with respect to evidence-based practices. Case specific techno-economic studies with current developments in this field of research with emphasis on software tools viz., Aspen Plus, Aspen HYSIS, Aspen Plus Economic Analyser (APEC) Aspen Icarus Process Evaluator (AIPE) are also highlighted. The study also emphasis on the carbon foot print of biofuels and its carbon credits (Carbon Offset Credits (COCs) and Carbon Reduction Credits (CRCs)) by leveraging a deep technical and robust business-oriented insights about the techno-economic analysis (TEA) exclusively for the biofuel production.


Assuntos
Biocombustíveis , Carbono , Simulação por Computador
5.
Carbohydr Polym ; 258: 117686, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33593559

RESUMO

In this study, curdlan sulphate - chitosan nanoparticles were prepared through polyelectrolyte complexing at a mass ratio of 2:1 respectively. The curdlan was produced by fermentation with Agrobacterium sp. ATCC 31750, which was then sulphated to form the polyanionic polymer. A first-line tuberculosis drug, Rifampicin and a phytochemical, DdPinitol, were encapsulated into Curdlan Sulphate (CS) - Chitosan Nanoparticles (C) (CSC NPs) of size 205.41 ± 7.24 nm. The drug release kinetics followed a Weibull model with initial burst release (48 % Rifampicin and 27 % d-Pinitol within 6 h), followed by a sustained release. The prepared CSC: d-PIN + RIF NPs was cytocompatible and entered the M.smegmatis infected macrophages through multiple endocytic pathways including clathrin, caveolae and macropinocytosis. They showed superior bactericidal activity (2.4-2.7 fold) within 4 h when compared to free drug Rifampicin (1.6 fold). The drug encapsulated CSC: RIF suppressed the pro-inflammatory gene (TNF-α by 3.66 ± 0.19 fold) and CSC: d-PIN + RIF increased expression of the anti-inflammatory gene (IL-10 by 13.09 ± 0.47 fold). Expression of TGF- ß1 gene also increased when treated with CSC: d-PIN + RIF (13.00 ± 0.19 fold) which provided the immunomodulatory activity of the encapsulated CSC NPs. Thus, curdlan sulphate - chitosan polyelectrolyte complex can be a potential nanocarrier matrix for intracellular delivery of multiple drugs.


Assuntos
Quitosana/química , Portadores de Fármacos/química , Macrófagos/microbiologia , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Mycobacterium smegmatis/efeitos dos fármacos , beta-Glucanas/química , Animais , Sobrevivência Celular , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Endocitose , Concentração de Íons de Hidrogênio , Inflamação , Cinética , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Nanopartículas/química , Polieletrólitos/química , Polímeros/química , Células RAW 264.7 , Rifampina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...